I. Notion de fonction:

I. Notion de fonction:

Soit D un intervalle de $\mathbb R$ ou une réunion d'intervalles.

I. Notion de fonction:

Soit D un intervalle de \mathbb{R} ou une réunion d'intervalles.

Définitions:

I. Notion de fonction :

Soit D un intervalle de \mathbb{R} ou une réunion d'intervalles.

Définitions:

On définit une fonction f sur D lorsque à **tout** réel x de D, on associe un **unique** réel.

I. Notion de fonction :

Soit D un intervalle de \mathbb{R} ou une réunion d'intervalles.

Définitions:

On définit une <u>fonction</u> f sur D lorsque à **tout** réel x de D, on associe un **unique** réel.

D est appelé l'<u>ensemble de définition</u> de f.

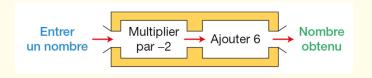
I. Notion de fonction :

Soit D un intervalle de \mathbb{R} ou une réunion d'intervalles.

Définitions :

■ On définit une <u>fonction</u> f sur D lorsque à **tout** réel x de D, on associe un **unique** réel.

D est appelé l'ensemble de définition de f.



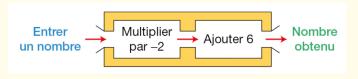
I. Notion de fonction :

Soit D un intervalle de \mathbb{R} ou une réunion d'intervalles.

Définitions :

■ On définit une <u>fonction</u> f sur D lorsque à **tout** réel x de D, on associe un **unique** réel.

D est appelé l'<u>ensemble de définition</u> de f.



 \blacksquare Si x est un élément de D, f(x) s'appelle l'image de x par f.

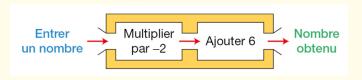
I. Notion de fonction :

Soit D un intervalle de \mathbb{R} ou une réunion d'intervalles.

Définitions :

On définit une <u>fonction</u> f sur D lorsque à **tout** réel x de D, on associe un **unique** réel.

D est appelé l'<u>ensemble de définition</u> de f.



 \blacksquare Si x est un élément de D, f(x) s'appelle l'image de x par f.

Exemple: Soit f la fonction définie sur \mathbb{R} , $x \mapsto x^2 + 2x + 1$. L'image de 2 par f, noté f(2), est égal à

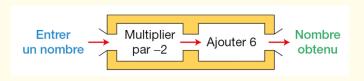
I. Notion de fonction :

Soit D un intervalle de \mathbb{R} ou une réunion d'intervalles.

Définitions :

■ On définit une <u>fonction</u> f sur D lorsque à **tout** réel x de D, on associe un **unique** réel.

D est appelé l'<u>ensemble de définition</u> de f.



 \blacksquare Si x est un élément de D, f(x) s'appelle l'image de x par f.

Exemple: Soit f la fonction définie sur \mathbb{R} , $x \mapsto x^2 + 2x + 1$. L'image de 2 par f, noté f(2), est égal à $2^2 + 2 \times 2 + 1 = 4 + 4 + 1 = 9$.

Soit $f: D \to \mathbb{R}$ une fonction. Soit y un nombre réel. On dit qu'un élément x de D est un antécédent de y par f si f(x) = y.

Soit $f: D \to \mathbb{R}$ une fonction. Soit y un nombre réel. On dit qu'un élément x de D est un antécédent de y par f si f(x) = y.

 $\frac{\textbf{Remarque}}{\textbf{l'équation d'inconnue}}: \textbf{Trouver les antécédents de } y \text{ revient à résoudre}$

$$f(x) = y$$
, x appartenant à D.

Soit $f: D \to \mathbb{R}$ une fonction. Soit y un nombre réel. On dit qu'un élément x de D est un antécédent de y par f si f(x) = y.

 $\frac{\textbf{Remarque}}{\textbf{l'équation d'inconnue}}: \textbf{Trouver les antécédents de } y \text{ revient à résoudre}$

$$f(x) = y$$
, x appartenant à D.

Exemple: Soit f la fonction définie sur \mathbb{R} , $x \mapsto x^2$.

Soit $f: D \to \mathbb{R}$ une fonction. Soit y un nombre réel. On dit qu'un élément x de D est un antécédent de y par f si f(x) = y.

 $\frac{\textbf{Remarque}}{\textbf{l'équation d'inconnue}}: \textbf{Trouver les antécédents de } y \ \textbf{revient à résoudre}$

$$f(x) = y$$
, x appartenant à D.

Exemple: Soit f la fonction définie sur \mathbb{R} , $x \mapsto x^2$.

Trouver les antécédents de 1 par f revient à trouver les solutions dans $\mathbb R$ de l'équation $x^2=1$.

Soit $f: D \to \mathbb{R}$ une fonction. Soit y un nombre réel. On dit qu'un élément x de D est un antécédent de y par f si f(x) = y.

 $\frac{\textbf{Remarque}}{\textbf{l'équation d'inconnue}}: \textbf{Trouver les antécédents de } y \ \textbf{revient à résoudre}$

$$f(x) = y$$
, x appartenant à D.

Exemple: Soit f la fonction définie sur \mathbb{R} , $x \mapsto x^2$.

Trouver les antécédents de 1 par f revient à trouver les solutions dans $\mathbb R$ de l'équation $x^2=1$.

On trouve que les antécédents de 1 par f sont 1 et -1.

Soit $f: D \to \mathbb{R}$ une fonction. Soit y un nombre réel. On dit qu'un élément x de D est un antécédent de y par f si f(x) = y.

Remarque : Trouver les antécédents de y revient à résoudre l'équation d'inconnue x

$$f(x) = y$$
, x appartenant à D.

Exemple: Soit f la fonction définie sur \mathbb{R} , $x \mapsto x^2$.

Trouver les antécédents de 1 par f revient à trouver les solutions dans $\mathbb R$ de l'équation $x^2=1$.

On trouve que les antécédents de 1 par f sont 1 et -1.

Comme pour tout nombre réel x, $x^2 \ge 0$, les nombres strictement négatifs n'ont pas d'antécédents par f.

Il Courbe représentative d'une fonction

Il Courbe représentative d'une fonction

On se place dans le plan muni d'un repère.

Il Courbe représentative d'une fonction

On se place dans le plan muni d'un repère.

Définition:

Il Courbe représentative d'une fonction

On se place dans le plan muni d'un repère.

Définition:

Soit f une fonction de domaine de définition D.

Il Courbe représentative d'une fonction

On se place dans le plan muni d'un repère.

Définition:

Soit f une fonction de domaine de définition D.

On appelle courbe représentative de la fonction f l'ensemble des points du plan de coordonnées (x; f(x)) avec $x \in D$.

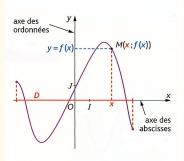
Il Courbe représentative d'une fonction

On se place dans le plan muni d'un repère.

Définition:

Soit f une fonction de domaine de définition D.

On appelle courbe représentative de la fonction f l'ensemble des points du plan de coordonnées (x; f(x)) avec $x \in D$.

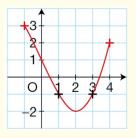


Exemple:

f est la fonction définie par la courbe ci-dessous :

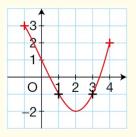
Exemple:

 \overline{f} est la fonction définie par la courbe ci-dessous :



Exemple:

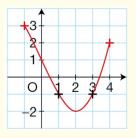
f est la fonction définie par la courbe ci-dessous :



L'ensemble de définition de f est

Exemple:

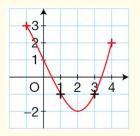
f est la fonction définie par la courbe ci-dessous :



L'ensemble de définition de f est [-1, 4].

Exemple:

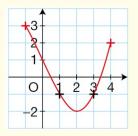
f est la fonction définie par la courbe ci-dessous :



L'ensemble de définition de f est [-1,4]. L'image de 4 par f est

Exemple:

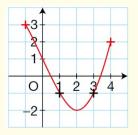
f est la fonction définie par la courbe ci-dessous :



L'ensemble de définition de f est [-1,4]. L'image de 4 par f est 2.

Exemple:

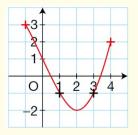
f est la fonction définie par la courbe ci-dessous :



L'ensemble de définition de f est [-1,4]. L'image de 4 par f est 2. Les antécédents de -1 par f sont

Exemple:

f est la fonction définie par la courbe ci-dessous :



L'ensemble de définition de f est [-1,4]. L'image de 4 par f est 2. Les antécédents de -1 par f sont 1 et 3.