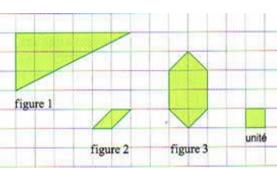
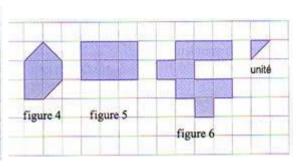
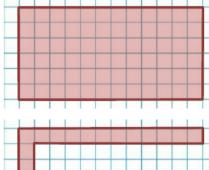

Aires


	•		•	i+	•		_
17	0	T	ın	ıT	\mathbf{n}	n	•


La d'une figure plane est la partie située à l'intérieur de la figure.

L'..... d'une figure est la mesure de sa surface.

Le calcul d'aire peut se faire avec des carreaux suivant une unité d'aire définie :



Aire: ua

Fig 1: ua Fig 2: ua Fig 3: ua Fig 4: ua Fig 5: ua Fig 6: ua

Aire et périmètre ne sont pas liés. Par exemple, une figure avec un grand périmètre peut avoir une petite aire.

Cette première figure a :

un périmètre de

et une aire de

Cette seconde figure a :

un périmètre de

et une aire de

Cette troisième figure a :

un périmètre de

et une aire de

Cela correspond à l'aire d'un carré de de côté.

Remarques:

Pour les grandes surfaces, on utilise la notion d'......) ou d'...... (......) :

1 a = m²

et

1 ha = a = m²

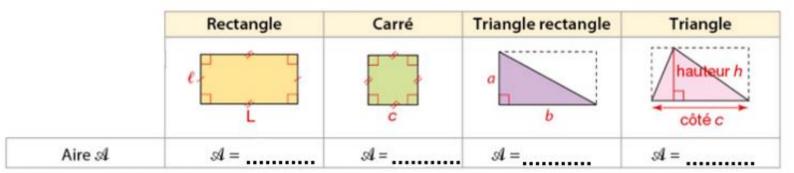
Unités d'aire - Tableau de conversion :

km²	hm²		dam²		m²		dm²		cm²		mm²	
		ha		а								

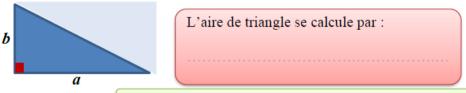
Attention, il y a cases par unités.

Pour remplir un nombre, il faut placer le chiffre des unités dans la case la plus à droite.

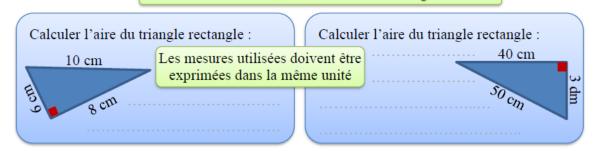
Exemples:


10 m² = m² 6,48 dam² = m²

15 cm² = m² 5,5 dm² = cm² 47,5 hm² = dm²

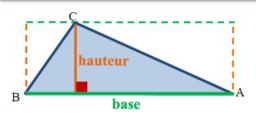

Exemples:

15 a = m² 18,5 ha = m² 15 400 m² = ha


Formules

L'aire du triangle rectangle

a et b sont les mesures des deux côtés de l'angle droit.



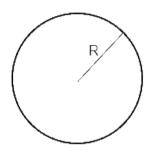
L'aire du triangle

L'aire de triangle se calcule par :

Les longueurs de la base et de la hauteur doivent être exprimées dans la même unité

A_{triangle} =

Calculer l'aire du triangle rectangle :


Calculer l'aire du triangle rectangle :

Les mesures utilisée doivent être exprimées dans la même unité

Formule : L'aire d'un disque de rayon R est

donnée par la formule : $oldsymbol{A} = \dots$

Exemple:

1) L'aire d'un disque de rayon 5 cm est :

$$A = \times \times \times$$

L'aire du disque est d'environ cm².

2) L'aire d'un disque de diamètre 14 m est :

L'aire du disque est d'environ m².