Modèles démographiques

Dans ce thème, il s'agit de donner des modèles mathématiques permettant d'étudier l'évolution d'une population.

I. — Quelques rappels

Définition 1

Si une quantité évolue d'une valeur initiale V_i à une valeur finale V_f , on définit :

- 1. la variation absolue de cette quantité par $V_f V_i$;
- 2. la variation relative de cette quantité par $\frac{V_f V_i}{V_i}$.

Remarque 3. La variation absolue a la même unité que la quantité étudiée alors que la variation relative est sans unité.

Propriété 4

Dans un repère du plan, une droite \mathcal{D} qui n'est pas parallèle à l'axe de ordonnées a une équation de la forme y = ax + b. On dit alors que le nombre a est le coefficient directeur de \mathcal{D} et que le nombre b est l'ordonnée à l'origine de \mathcal{D} .

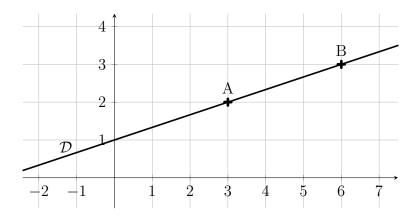
Méthode 5

Soit $\mathcal D$ une droite qui n'est pas parallèle à l'axe des ordonnées.

- 1. L'ordonnée à l'origine de $\mathcal D$ est l'ordonnée du point d'intersection de $\mathcal D$ avec l'axe des ordonnées.
- 2. Soit A et B deux points distincts de \mathcal{D} . Alors, le coefficient directeur de \mathcal{D} est

$$a = \frac{y_{\rm B} - y_{\rm A}}{x_{\rm B} - x_{\rm A}}$$

Exemple 6. On considère la droite \mathcal{D} représentée ci-dessous.



Alors, l'ordonnée à l'origine de \mathcal{D} est $b = \dots$ et, comme les points A (....;....) et B (.....;) appartiennent à \mathcal{D} , le coefficient directeur de \mathcal{D} est $a = \dots$

II. — Modèle linéaire

Exemple 7. On considère l'évolution d'une population d'une ville sur plusieurs années. Les valeurs données sont exprimées en milliers et arrondies à l'unité.

année	2015	2016	2017	2018	2019	2020
population	49	51	53	55	57	59

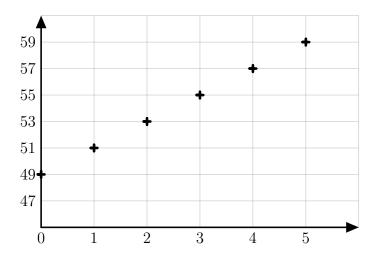
On considère 2015 comme l'année 0 et on note u(n) la population à l'année n. Ainsi, u(0) = 49, u(1) = 51, u(2) = 53, u(3) = 55, u(4) = 57 et u(5) = 59.

Si on calcule les variations absolues d'une année sur l'autre, on trouve :

$$u(1) - u(0) = 2$$
 $u(2) - u(1) = 2$ $u(3) - u(2) = 2$ $u(4) - u(3) = 2$ $u(5) - u(4) = 2$.

Ainsi, on constate que les variations absolues sont constantes égales à 2.

Si on représente dans un repère les points de coordonnées (n, u(n)), on obtient le nuage de points suivant :



On constate que ces points sont alignés sur une droite dont le coefficient directeur est et dont l'ordonnée à l'origine est Ainsi, l'équation réduite de cette droite est y =

Si la population continue à évoluer de la même façon, on peut estimer qu'en 2030, la ville aura une population de $2 \times \dots + 49 = \dots$ milliers d'habitants.

Définition 8

On dit qu'une quantité u dépendant d'un entier naturel n a une variation linéaire si sa variation absolue u(n+1) - u(n) a une valeur constante a (c'est-à-dire une valeur a qui ne dépend pas de n).

La suite des valeurs u(n) est alors appelée une suite arithmétique de raison a.

Propriété 9

Si une suite de valeurs u(n) est une suite arithmétique de raison a alors

- 1. les points de coordonnées (n; u(n)) sont alignés sur une droite dont le coefficient directeur est a;
- **2.** Pour tout entier naturel n, u(n) = u(0) + na.

En fait, dans la réalité, les variations absolues ne sont jamais constantes. On considère cependant que le modèle linéaire est adapté si les variations absolues varient peu. Cela se traduira par le fait que les points de coordonnées (n, u(n)) ne sont pas parfaitement alignés mais approximativement alignés. Dans ce cas, on peut rechercher une droite qui représenterait au mieux cette alignement approximatif. Cette droite est appelée la droite d'ajustement linéaire du nuage de points.

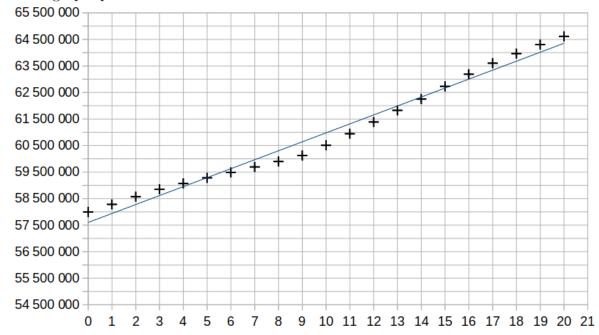
Exemple 10. Sur le site de l'INSEE ⁽¹⁾, on trouve les statistiques de la population française. On a ressemblé dans le tableau suivant le nombre total d'habitants en France entre 1990 et 2010.

année	population
1990	57 996 401
1991	58 280 135
1992	58 571 237
1993	58 852 002
1994	59 070 077
1995	59 487 413
1996	59 280 577

année	population
1997	59 691 177
1998	59 899 347
1999	60 122 665
2000	60 508 150
2001	60 941 410
2002	61 385 070
2003	61 824 030

année	population	
2004	62 251 062	
2005	62 730 537	
2006	63 186 117	
2007	63 600 690	
2008	63 961 859	
2009	64 304 500	
2010	64 612 939	

Si on représente le nuage de points associé en prenant comme année 0 l'année 1990, on obtient le graphique suivant.



À l'aide d'un tableur, on a construit sur le graphique précédent la droite d'ajustement linéaire de ce nuage de points. Cette droite passe par les points de coordonnées (;) et (;). On peut donc estimer son coefficient directeur à

a =

De plus, l'ordonnée à l'origine de cette droite vaut approximativement donc <u>une</u> droite d'ajustement linéaire a une équation proche de y=

^{(1).} https://www.insee.fr/fr/statistiques/1892117?sommaire=1912926