

Recopier et compléter par ∈ ou ∉.

c.
$$\frac{27}{3}$$
 ... \mathbb{N} d. $-\sqrt{4}$... \mathbb{Z} e. -152 ... \mathbb{N}

2 Recopier et compléter par ∈ ou ∉ .

a. 56 ...
$$\mathbb{N}$$
 b. -8,4 ... \mathbb{Z} c. $\frac{6}{4}$... \mathbb{N} d. -7 ... \mathbb{Z}

Recopier et compléter par
$$\in$$
 ou \notin .
a. 5 ... \mathbb{N} b. -8 ... \mathbb{Z} c. $\sqrt{8}$... \mathbb{N} d. 9,1 ... \mathbb{Z}

Reconnaître un nombre décimal

Expliquer pourquoi le nombre est décimal.

$$\frac{48}{80}$$

Solution

MÉTHODE Pour prouver qu'un nombre est décimal:

- soit on l'écrit sous la forme $\frac{a}{10^n}$;
- soit on vérifie qu'une écriture décimale a un nombre fini de chiffres.

À votre tour

5 Expliquer pourquoi le nombre est décimal.

$$a. - \frac{117}{36}$$

b. 341,075 **c.**
$$\frac{147}{25}$$

c.
$$\frac{147}{25}$$

6 Expliquer pourquoi le nombre est décimal.

a. 2,050 27 **b.**
$$-\frac{7}{40}$$
 c. $\frac{80}{640}$

b.
$$-\frac{7}{40}$$

c.
$$\frac{80}{640}$$

Présenter les résultats fractionnaires sous forme irréductible

Mettre sous forme irréductible les fractions suivantes :

a.
$$\frac{40}{15}$$

b.
$$\frac{49}{84}$$

b.
$$\frac{49}{84}$$
 c. $\frac{180}{108}$

d.
$$\frac{143}{52}$$

8 Traduire une inégalité par un intervalle et réciproquement

1. Traduire les inégalités suivantes, où x est un réel, sous forme d'intervalles.

a
$$-3 < x ≤ 0$$

a.
$$I = [5; 9]$$

b.
$$J =]-0.5; +\infty[$$

c.
$$K =]-\infty$$
; $\pi[$

$$d. L =]-7;0]$$

Traduire l'appartenance d'un nombre réel x à chacun de ces intervalles par une inégalité.

Traduire un intervalle à l'aide d'inégalités

Traduire par une (ou des) inégalité(s). a. $x \in [-6; 8[$ b. $t \in]-\infty; 1]$ c. $a \in]-2; +\infty[$

Solution

MÉTHODE Pour traduire l'appartenance à un intervalle, il faut se reporter au tableau du Cours et bien observer les crochets.

À votre tour

Traduire par une (ou des) inégalité(s). **a.**
$$x \in]-\infty$$
; -3[**b.** $a \in]3$; 5[**c.** $t \in [8; +\infty[$

Traduire par une (ou des) inégalité(s).
a.
$$y \in]0; +\infty[$$
 b. $x \in]0; 2]$ c. $a \in]-\infty; 9]$