Chapitre 3 : Ecriture fractionnaire

Partie 1

I. Rappels sur les écritures fractionnaires

Définition: a et b désignent deux nombres avec $b \neq 0$.

L'écriture fractionnaire $\frac{a}{b}$ est le de a par b. $\frac{a}{b} = a \dots b$

Si a et b sont des nombres **entiers**, on parle de ou de nombre ou de nombre

Exemple: $\frac{18}{8}$ est une mais pas $\frac{3.5}{11}$, c'est une

Règle des signes :

$$\frac{-a}{-b} = \frac{\dots}{\dots}$$
 et $\frac{-a}{b} = \frac{\dots}{\dots} = \dots \frac{\dots}{\dots}$

Il est déconseillé de laisser le signe - au

Exemples: $\frac{-15}{-5} = \frac{\dots}{} = \dots = \frac{-12}{4} = -\frac{\dots}{} = \dots = \frac{30}{-5} = -\frac{\dots}{} = \dots$

II. Fractions égales

Règle : On ne change pas la valeur d'une fraction en ou en

......le numérateur et le dénominateur par unnombre non nul.

$$\frac{a}{b} = \frac{a \times k}{b \times k}$$
 et $\frac{a}{b} = \frac{a \div k}{b \div k}$

$$\frac{4}{7} = \frac{4 \times 3}{7 \times ...} = \frac{...}{...} \qquad \frac{-20}{24} = \frac{... ...}{... ...} = \frac{...}{6} \qquad \frac{33}{-44} = \frac{... ...}{... ...} = \frac{3}{...} = -\frac{...}{...}$$

Application 1 - Calcul mental

$$\frac{2}{0,4} = \frac{2 \times ...}{0,4 \times ...} = \frac{3}{0,2} = \frac{... ...}{... ...} = \frac{2}{8} = \frac{... ...}{...} = \frac{... ...}{...} =$$

Application 2 - Simplification de fractions

Règle : Simplifier une fraction, c'est lui donner une fraction qui lui est mais avec des numérateurs et des dénominateurs les plus possibles.

Remarque : Quand on a simplifié au maximum, on parle de fraction

Exemples:
$$\frac{-18}{27} = \frac{-25}{-35} = \frac{24}{-32} =$$

Application 3 - Additions et soustractions de fractions

Règle : Pour additionner (ou soustraire) des nombres en écriture fractionnaire :

Exemples:

$$\frac{4}{5} + \frac{2}{5} =$$

$$\frac{-7}{9} + \frac{-13}{9} =$$

$$\frac{5}{3} - \frac{7}{3} =$$

$$\frac{-2}{7} - \frac{-10}{7} =$$

Exemples:

$$\frac{3}{4} + \frac{5}{8} =$$

$$\frac{-17}{20} - \frac{3}{5} =$$

$$\frac{7}{5} - \frac{2}{9} =$$

$$1 + \frac{3}{5} =$$

$$-8 + \frac{-3}{4} =$$

$$\frac{4}{7} + \frac{-15}{21} =$$

$$\frac{4}{3} + \frac{5}{4} =$$

$$\frac{-5}{6} + \frac{-3}{8} =$$

$$4 - \frac{20}{3} =$$

$$\frac{7}{5} - 6 =$$

Feuille d'exercices - Addition et soustractions de fractions

Enchainer des additions et des soustractions

Les règles ne changent pas, on commence par les calculs entre puis on effectue les calculs de lavers la

$$A = \frac{8}{9} + \frac{3}{9} - \frac{5}{9}$$

$$B = \frac{2}{6} + \frac{9}{4} - \frac{5}{8}$$

$$C = \frac{7}{30} - \left(\frac{1}{15} - \frac{1}{5}\right)$$

III. Produits en croix

Définition: On considère deux nombres en écriture fractionnaire $\frac{a}{b}$ et $\frac{c}{d}$. $\frac{a}{b} \times \frac{c}{d}$

Règle: Si deux nombres en écriture fractionnaire sont égaux, alors leurs produits en croix sont

Exemple : On sait que $\frac{2}{7} = \frac{4}{14}$ donc =

Règle : Si les produits en croix de deux nombres en écriture fractionnaire sont égaux,

alors ces nombres sont

Exemples:

1) Les nombres $\frac{26}{39}$ et $\frac{4}{6}$ sont-ils égaux ?

Calculons séparément les produits en croix :

..... × =

..... x =

2) Les nombres $\frac{-3}{11}$ et $\frac{-5}{21}$ sont-ils égaux ?

Calculons séparément les produits en croix :

..... × =

..... × =

Donc $\frac{-3}{11}$ $\frac{-5}{21}$

VI. Résoudre des problèmes

Exemple: Lors d'un triathlon, j'ai parcouru les $\frac{2}{5}$ du parcours à la nage, les $\frac{1}{4}$ en vélo et le reste à la course à pied.

Quelle fraction du parcours ai-je parcouru à la course à pied ?

VII. Simplification de fractions

Simplifions la fraction $\frac{140}{105}$:

donc
$$\frac{140}{105} =$$