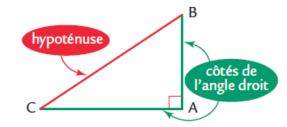
Chapitre 2 : Théorème de Pythagore

I. Vocabulaire dans un triangle rectangle


Définition (Rappel): Un triangle rectangle est un triangle qui a un

Le côté qui est opposé à l'angle droit est appelé

Exemple 1: Le triangle ABC est en en

[BC] est du triangle ABC.

[AB] et [AC] sont les de l'angle droit.

Remarque: L'hypoténuse d'un triangle rectangle est toujours le côté de

Définition : Le carré d'un nombre est égal au produit de ce nombre par

$$a^2 = ... \times ...$$

On appelle carré parfait le carré d'un nombre entier positif. Voici la liste des 12 premiers carrés parfaits :

Entier	0	1	2	3	4	5	6	7	8	9	10	11	12
Carré													

Pour les autres nombres, on peut utiliser la touche

 x^2

de la calculatrice.

Définition: La racine carré d'un nombre positif a est le nombre qui multiplié par lui-même donne le nombre a, on la note

Exemples : $\sqrt{4} = \dots$

 $\sqrt{9} =$

 $\sqrt{25} =$

 $\sqrt{121} =$

 $\sqrt{400} =$

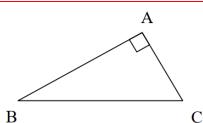
 $\sqrt{7} =$

Pour les nombres plus compliqués, on utilise la calculatrice avec les touches

 x^2

 $\sqrt{1156} = \dots$

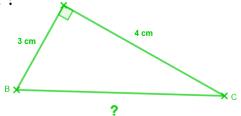
La racine carrée d'un nombre n'est pas toujours un nombre entier, on donne une valeur approchée : $\sqrt{7} \approx \dots$


II. Théorème de Pythagore

Propriété: Si un triangle est rectangle, alors le carré de la longueur de l'..... est égal à la somme des carrés des deux autres

Exemple:

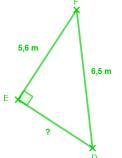
ABC est rectangle en A donc $\dots^2 = \dots^2 + \dots^2$


On commence toujours l'égalité par l'.....

Le théorème de Pythagore sert à calculer la longueur d'un côté dans un triangle rectangle si on connait la longueur de de ses côtés.

Exemples types :

Calcule BC:



On sait que le triangle ABC est en en

Alors d'après le théorème de, on a :

Donc [BC] mesure cm.

Calcule ED:

On sait que le triangle EDF esten

Alors d'après le théorème de, on a :

Donc [ED] mesure m.

Remarque : Vu que dans certains cas, la racine carrée d'un nombre ne se termine toujours pas, le théorème de Pythagore donne souvent des valeurs des longueurs à calculer.

Exemple:

MNP est un triangle rectangle en P tel que MN = 7 cm et MP = 5 cm. Calcule une valeur approchée au dixième près de NP.

MNP est un triangle rectangle en P donc l'hypoténuse est

On sait que